Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(13): 19974-19985, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368300

RESUMO

Using organic waste and residue streams to be turned into valuable and greener materials for various applications has proven an efficient and suitable strategy. In this work, two green materials (nanosponges and a polymer) were synthesized using potato peels and applied for the first time to adsorb and recover Neodymium (Nd3+) from aqueous solutions. The recovery of Nd3+ that belongs to the rare earth elements has attracted important interest due to its/their importance in several industrial and technological applications. The fine potato peel waste (FPPW) polymer presented an irregular shape and porous surface. At the same time, the ß-cyclodextrin (ß-CD) nanosponges had uniform distribution with regular and smooth shapes. ß-CD nanosponges exhibited a much higher total carboxyl content (4.02 mmol g-1) than FPPW (2.50 mmol g-1), which could impact the Nd3+ adsorption performance because carboxyl groups can interact with cations. The adsorption capacity increased with the increase of the pH, reaching its maximum at pHs 6-7 for ß-CD nanosponges and 4-7 for FPPW polymer. The kinetic and equilibrium data were well-fitted by General order and Liu models. ß-CD nanosponges attained adsorption capacity near 100 mg Nd per gram of adsorbent. Thermodynamic and statistical physical results corroborated that the adsorption mechanism was due to electrostatic interaction/complexation and that the carboxyl groups were important in the interactions. ß-CD nanosponges (three cycles of use) were more effective than FPPW (one cycle of use) in the regeneration. Finally, ß-CD nanosponges could be considered an eco-friendly adsorbent to recover Nd3+ from aqueous matrices.


Assuntos
Solanum tuberosum , beta-Ciclodextrinas , Neodímio , Adsorção , Polímeros , beta-Ciclodextrinas/química , Água/química , Física , Cinética
2.
Environ Sci Pollut Res Int ; 31(7): 10417-10429, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200192

RESUMO

There is a growing need to develop new strategies for rare earth element (REE) recovery from secondary resources. Herein, a novel approach to utilize biogenic silica (from rice husk) and metakaolin was employed to fabricate magnetic geopolymer (MGP) by incorporating metallic iron. The fabricated MGP adsorbent material was used to uptake Ce3+, La3+, and Nd3+ from synthetic solutions and real phosphogypsum leachate in batch and column modes. The MGP offers a negatively charged surface at pH above 2.7, and the uptake of REEs rises from pH 3 to 6. The kinetic study validated that the kinetics was much faster for Nd3+, followed by La3+ and Ce3+. A thermodynamic investigation validated the exothermic nature of the adsorption process for all selected REEs. The desorption experiment using 2 mol L-1 H2SO4 as the eluent demonstrated approximately 100% desorption of REEs from the adsorbent. After six adsorption-desorption cycles, the MGP maintained a high adsorption performance up to cycle five before suffering a significant decrease in performance in cycle six. The effectiveness of MGP was also assessed for its applicability in recovering numerous REEs (La3+, Ce3+, Pr3+, Sm3+, and Nd3+) from real leachate from phosphogypsum wastes, and the highest recovery was achieved for Nd3+ (95.03%) followed by Ce3+ (86.33%). The operation was also feasible in the column presenting suitable values of the length of the mass transfer zone. The findings of this investigation indicate that MGP adsorbent prepared via a simple route has the potential for the recovery of REEs from synthetic and real samples in both batch and continuous operations modes.


Assuntos
Sulfato de Cálcio , Metais Terras Raras , Oryza , Fósforo , Adsorção , Fenômenos Magnéticos
3.
Sci Rep ; 13(1): 15195, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710008

RESUMO

This study explores the fabrication of nanofibers using different types of gelatins, including bovine, porcine, and fish gelatins. The gelatins exhibited distinct molecular weights and apparent viscosity values, leading to different entanglement behavior and nanofiber production. The electrospinning technique produced nanofibers with diameters from 47 to 274 nm. The electrospinning process induced conformational changes, reducing the overall crystallinity of the gelatin samples. However, porcine gelatin nanofibers exhibited enhanced molecular ordering. These findings highlight the potential of different gelatin types to produce nanofibers with distinct physicochemical properties. Overall, this study sheds light on the relationship between gelatin properties, electrospinning process conditions, and the resulting nanofiber characteristics, providing insights for tailored applications in various fields.

4.
Nanomaterials (Basel) ; 13(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513056

RESUMO

In this work, nitrogen-doped porous biochars were synthesized from spruce bark waste using a facile single-step synthesis process, with H3PO4 as the chemical activator. The effect of nitrogen doping on the carbon material's physicochemical properties and adsorption ability to adsorb the Reactive Orange 16 dye and treat synthetic effluents containing dyes were evaluated. N doping did not cause an important impact on the specific surface area values, but it did cause an increase in the microporosity (from 19% to 54% of micropores). The effect of the pH showed that the RO-16 reached its highest removal level in acidic conditions. The kinetic and equilibrium data were best fitted by the Elovich and Redlich-Peterson models, respectively. The adsorption capacities of the non-doped and doped carbon materials were 100.6 and 173.9 mg g-1, respectively. Since the biochars are highly porous, pore filling was the main adsorption mechanism, but other mechanisms such as electrostatic, hydrogen bond, Lewis acid-base, and π-π between mechanisms were also involved in the removal of RO-16 using SB-N-Biochar. The adsorbent biochar materials were used to treat synthetic wastewater containing dyes and other compounds and removal efficiencies of up to 66% were obtained. The regeneration tests have demonstrated that the nitrogen-doped biochar could be recycled and reused easily, maintaining very good adsorption performance even after five cycles. This work has demonstrated that N-doped biochar is easy to prepare and can be employed as an efficient adsorbent for dye removal, helping to open up new solutions for developing sustainable and effective adsorption processes to tackle water contamination.

5.
Nanomaterials (Basel) ; 12(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269353

RESUMO

Preparing sustainable and highly efficient biochars as electrodes remains a challenge for building green energy storage devices. In this study, efficient carbon electrodes for supercapacitors were prepared via a facile and sustainable single-step pyrolysis method using spruce bark as a biomass precursor. Herein, biochars activated by KOH and ZnCl2 are explored as templates to be applied to prepare electrodes for supercapacitors. The physical and chemical properties of biochars for application as supercapacitors electrodes were strongly affected by factors such as the nature of the activators and the meso/microporosity, which is a critical condition that affects the internal resistance and diffusive conditions for the charge accumulation process in a real supercapacitor. Results confirmed a lower internal resistance and higher phase angle for devices prepared with ZnCl2 in association with a higher mesoporosity degree and distribution of Zn residues into the matrix. The ZnCl2-activated biochar electrodes' areal capacitance reached values of 342 mF cm-2 due to the interaction of electrical double-layer capacitance/pseudocapacitance mechanisms in a matrix that favors hydrophilic interactions and the permeation of electrolytes into the pores. The results obtained in this work strongly suggest that the spruce bark can be considered a high-efficiency precursor for biobased electrode preparation to be employed in SCs.

6.
Nanomaterials (Basel) ; 10(7)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708405

RESUMO

Some recent developments in the preparation of biomass carbon electrodes (CEs) using various biomass residues for application in energy storage devices, such as batteries and supercapacitors, are presented in this work. The application of biomass residues as the primary precursor for the production of CEs has been increasing over the last years due to it being a renewable source with comparably low processing cost, providing prerequisites for a process that is economically and technically sustainable. Electrochemical energy storage technology is key to the sustainable development of autonomous and wearable electronic devices. This article highlights the application of various types of biomass in the production of CEs by using different types of pyrolysis and experimental conditions and denotes some possible effects on their final characteristics. An overview is provided on the use of different biomass types for the synthesis of CEs with efficient electrochemical properties for batteries and supercapacitors. This review showed that, from different biomass residues, it is possible to obtain CEs with different electrochemical properties and that they can be successfully applied in high-performance batteries and supercapacitors. As the research and development of producing CEs still faces a gap by linking the type and composition of biomass residues with the carbon electrodes' electrochemical performances in supercapacitor and battery applications, this work tries to diminish this gap. Physical and chemical characteristics of the CEs, such as porosity, chemical composition, and surface functionalities, are reflected in the electrochemical performances. It is expected that this review not only provides the reader with a good overview of using various biomass residues in the energy storage applications, but also highlights some goals and challenges remaining in the future research and development of this topic.

7.
Environ Sci Pollut Res Int ; 27(26): 33307-33320, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32529627

RESUMO

Wastes from the Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds were studied as biosorbents for the removal of basic fuchsin from waters. Both biosorbents were prepared and characterized by different analytical methods. The characterization data showed that both materials were mainly composed of lignin, cellulose, and hemicellulose. Both biosorbents exhibited roughened surfaces and surface functional groups such as C-H, C=O, C=C, C-O, C-N, and OH bonds. Furthermore, the XRD pattern shows an amorphous phase with a wide peak from 10 to 30° due to the lignin. In terms of dosage and pH, the use of 1 g L-1 and 9.0, respectively, is recommended. The initial concentrations for the biosorption kinetics ranged from 50 to 500 mg L-1, where the Pacara ear and the Ironwood reached an adsorption capacity of 145.62 and 100.743 mg g-1 for the 500 mg L-1. The pseudo-second-order was found to be the proper model for describing biosorption of basic fuchsin onto Pacara Earpod tree and Ironwood, respectively. For the isotherm experiments, the maximum experimental biosorption capacity was found to be 166.858 and 110.317 mg g-1 for the Pacara Earpod and Ironwood for the initial concentration of 500 mg L-1 at 328 K. The Langmuir and the Tóth models were the best for representing the equilibrium curves for the basic fuchsin on the Pacara Earpod and the Ironwood, respectively. Maximum adsorption capacities of 177.084 mg g-1 and 136.526 mg g-1 were achieved for the Pacara Earpod tree and Ironwood, respectively. The biosorption process was spontaneous, endothermic, and favorable for both biosorbents. The biosorbents were also applied for coloration removal of simulated textile effluents, reaching 66% and 54% for the Pacara Earpod and Ironwood, respectively. For the final application, the materials were used in fixed-bed biosorption, with an initial concentration of 200 mg L-1, reaching breakthrough times of 710 and 415 min, leading to biosorption capacities of the column of 124.5 and 76.5 mg g-1, for the Pacara Earpod and Ironwood, respectively.


Assuntos
Caesalpinia , Poluentes Químicos da Água/análise , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Corantes de Rosanilina , Sementes/química , Termodinâmica , Árvores
8.
Environ Sci Pollut Res Int ; 26(31): 32198-32208, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31494847

RESUMO

An alternative and low-cost adsorbent (CS-APTES) was developed by the functionalization corn stover (CS) with 3-aminopropyltrietoxysilane (APTES) using a simple method. Several analytical techniques were used to prove the functionalization and then, CS-APTES was employed to adsorb Reactive Red 141 (RR141) dye from aqueous solutions. The functionalization with APTES caused an increase of 15 times in the adsorption capacity. The adsorption of RR141 on CS-APTES was favored at pH 3.0 using a dosage of 3.0 g L-1. The adsorption equilibrium was reached within 4 h, being the process thermodynamically favorable, endothermic, and controlled by chemisorption. The maximum adsorption capacity was 15.65 mg g-1. CS-APTES was efficient to treat a colored effluent containing various ions and molecules. The use of 10 g L-1 of CS-APTES was sufficient to decolorize more than 98% of this effluent. It was concluded that CS-APTES can be easily prepared from CS, generating an efficient and low-cost adsorbent which, in turn, is able to treat colored effluents.


Assuntos
Poluentes Químicos da Água/análise , Purificação da Água/métodos , Zea mays/química , Adsorção , Cinética , Soluções , Termodinâmica
9.
Environ Sci Pollut Res Int ; 25(25): 24713-24725, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29923049

RESUMO

Sonicated activated carbon (SAC) was developed and used to remove ibuprofen and ketoprofen from aqueous media by adsorption. A standard activated carbon sample (AC) was used as comparison. Both adsorbents were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption isotherms (Brunauer, Emmett, and Teller (BET)), helium gas pycnometry, and scanning electron microscopy (SEM). In the adsorption study, kinetics, equilibrium, and thermodynamics were evaluated. SAC presented better characteristics than AC. Pseudo-second-order model was adequate to predict the kinetic curves. The isotherm data obeyed the Sips model. Thermodynamic results revealed a spontaneous and endothermic process, where physisorption was involved. The maximum adsorption capacities of SAC were 134.5 and 89.2 mg g-1 for ibuprofen and ketoprofen, respectively. For AC, the maximum adsorption capacities were 115.1 and 79.1 mg g-1 for ibuprofen and ketoprofen, respectively. The sonication technique presented great potential to improve the AC characteristics, generating a promising material (SAC) for ibuprofen and ketoprofen adsorption.


Assuntos
Carvão Vegetal/química , Preparações Farmacêuticas/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Cinética , Microscopia Eletrônica de Varredura , Sonicação , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Água , Poluentes Químicos da Água/análise , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...